-
- Главная
- Фармакопея
- ФСО
- Общая информация
Утверждена приказом: | Приказ Минздрава России от 20.07.2023 № 377 |
Дата введения в действие: | c 01.09.2023 |
Издание: | Государственная фармакопея Российской Федерации XV издания |
Раздел: | 1.2.1.1. Методы спектрального анализа |
Тип: | Общая фармакопейная статья (ОФС) |
Номер: | ОФС.1.2.1.1.0008 |
Внутр.№: | 4408.1 |
Статус: | Действующая статья |
МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Масс-спектрометрия – метод качественного и количественного анализа лекарственных средств, основанный на прямом измерении отношений массы к числу элементарных положительных или отрицательных зарядов ионов (m/z) в газовой фазе, полученных из испытуемого вещества. Заряд может быть обусловлен присоединением или потерей электрона, протона, катиона или аниона в зависимости от условий ионизации и состава образца. Данное отношение выражается в атомных единицах массы (а.е.м.) или в дальтонах (Да). Ионы, образовавшиеся в ионном источнике прибора, ускоряются и перед попаданием в детектор разделяются с помощью масс-анализатора. Эти процессы происходят в камере, в которой насосная система поддерживает вакуум от 10−3 до 10−6 Па. Сигнал, отвечающий иону, представлен несколькими пиками, соответствующими статистическому распределению различных изотопов этого иона. Такой сигнал называют изотопным профилем (для небольших молекул), а отдельный пик, представляющий наиболее распространённый изотоп для атома, - моноизотопным пиком. Полученный масс-спектр является графиком зависимости относительного содержания различных ионных частиц от отношения m/z. При анализе сложных молекул возникает необходимость в двух и более последовательных масс-анализаторах для расшифровки молекулярной структуры. В приборе МС/МС (MSn) (тандемный масс-спектрометр) масс-анализаторы выстраивают последовательно друг за другом. Из ионов, разделённых в первом масс-анализаторе, отбирают ионы-прекурсоры (родительские ионы) и разбивают их на более мелкие фрагменты столкновением с атомами инертного газа (диссоциация, активированная соударением, - CID) или лазерным излучением. Этот процесс реализуют перед вторым масс-анализатором, при помощи которого анализируют продукты распада (дочерние ионы).
Масс-спектрометрический метод даёт важную качественную и количественную (с использованием внешнего или внутреннего стандартов) информацию (определение молекулярных масс, молекулярной формулы, структуры фрагментов определяемых молекул) с пределом обнаружения от пикомоль [пмоль (10−12)] до фемтомоль [фмоль (10−15)].
Установление подлинности лекарственных веществ. Фрагментированный масс-спектр является «отпечатком пальцев» химического строения. Поэтому идентичность масс-спектров однозначно свидетельствует об идентичности молекул, особенно в сочетании с использованием библиотек масс-спектров и хроматографических данных. Масс-спектр высокого разрешения позволяет определять атомный состав молекулы (брутто-формулу) по точной массе.
Количественное определение фармацевтических субстанций и примесей в лекарственных формах. Количественное определение проводится с использованием стандартных образцов в комбинации с традиционными хроматографическими методиками, причём не требуется точного воспроизведения условий хроматографирования, поскольку пик на хроматограмме идентифицируют по масс-спектру, а интегрирование по площадям пиков избранных ионов или пиков избранных реакций образования конкретного иона, как правило, позволяет количественно определять компонент при неполном разделении пиков на хроматограмме.
Идентификация примесей и установление неизвестной структуры. Масс-спектр позволяет определить молекулярную массу соединения по молекулярному иону, а во многих случаях выяснить, из каких фрагментов состоит молекула, что в сочетании с применением библиотек спектров и данными спектроскопии ЯМР даёт возможность однозначно установить химическую структуру.
Технические характеристики масс-спектрометров
Важнейшими техническими характеристиками масс-спектрометров являются скорость сканирования, чувствительность, динамический диапазон, разрешение.
Масс-анализатор пропускает ионы с определённым соотношением массы и заряда (m/z) в определённое время (кроме многоколлекторных приборов, ионно-циклотронного резонанса, орбитальной ловушки ионов). Для того чтобы проанализировать все ионы по отношению m/z, масс-анализатор должен сканировать все значения, нужные для пропускания к детектору всех интересующих ионов. Скорость развёртывания поля называется скоростью сканирования, которая должна быть максимальна (соответственно, время сканирования должно быть как можно меньше), поскольку масс-спектрометр должен зарегистрировать сигнал за время выхода хроматографического пика, которое может составлять несколько секунд. При этом чем больше масс-спектров будет измерено за время выхода хроматографического пика, тем точнее будет описан хроматографический пик и тем меньше будет вероятность пропустить его максимальное значение.
Самым медленным масс-анализатором является магнит, минимальное время сканирования которого без особой потери чувствительности составляет доли секунды. Квадрупольный масс-анализатор может разворачивать спектр за десятые доли секунды, ионная ловушка и линейная ионная ловушка - быстрее, а масс-спектрометр ионно-циклотронного резонанса - медленнее.
Любое сканирование во всех перечисленных типах масс-анализаторов является компромиссным – с увеличением скорости сканирования понижается чувствительность, т.к. меньше времени тратится на запись сигнала на каждое массовое число. Для типичных методов анализа скорости сканирования квадрупольного анализатора или ионной ловушки оказывается достаточно для получения удовлетворительных результатов. В то же время для высокопроизводительного анализа сложных молекулярных систем желательно использовать времяпролётный масс-спектрометр, который способен записывать масс-спектры со скоростью 40000 спектров в секунду.
Разрешение или разрешающую способность масс-спектрометра определяют как возможность масс-анализатора разделять ионы с близкими массами. Очень важно определить массы ионов максимально точно, это позволяет вычислить атомный состав иона или идентифицировать молекулу путём сравнения с базой данных, сократив число возможных кандидатов с тысяч и сотен до единиц или одного-единственного. Для магнитных масс-анализаторов, в которых расстояние между пиками масс-спектра не зависит от масс ионов, разрешение представляет собой величину равную M/ΔM. Эта величина, как правило, определяется по 10 %-ой высоте пика. Таким образом, разрешение 1000 означает, что пики с массами 100,0 а.е.м. и 100,1 а.е.м. отделяются друг от друга, то есть не накладываются вплоть до 10 % высоты.
Для анализаторов, в которых расстояние между пиками меняется в рабочем диапазоне масс (чем больше масса, тем меньше расстояние), таких как квадрупольные анализаторы, ионные ловушки, времяпролётные анализаторы, разрешение (M/ΔM) имеет другой смысл: оно характеризует конкретную массу. Поэтому эти масс-анализаторы характеризуют по ширине пиков – величине, остающейся постоянной во всём диапазоне масс. Ширину пиков измеряют на уровне 50 % их высоты. Для таких приборов ширина пика на полувысоте, равная 1, является неплохим показателем и означает, что такой масс-анализатор способен различить номинальные массы, отличающиеся на атомную единицу массы практически во всём его рабочем диапазоне.
Номинальной массой или массовым числом называют ближайшее к точной массе иона целое число в шкале атомных единиц массы. Например, масса иона водорода Н+ равна 1,00787 а.е.м., а его массовое число равно 1. Масс-анализаторы, которые измеряют номинальные массы, называют анализаторами низкого разрешения. Масс-спектрометры с двойной фокусировкой (магнитной и электростатической), ионно-циклотронного резонанса относят к приборам среднего или высокого разрешения. Типичным разрешением для магнитного спектрометра является величина, превышающая 60000, а работа на уровне разрешения 10000–20000 является рутинной. На масс-спектрометре ионно-циклотронного резонанса при анализе образца с массой около 500 а.е.м. можно легко достичь разрешения 500000, что позволяет проводить измерения масс ионов с точностью до 4-го–5-го знака после запятой. Разрешения в несколько тысяч можно добиться при использовании времяпролётных масс-анализаторов; однако, исследуя образцы с большой молекулярной массой, для которых этот тип приборов имеет преимущество перед другими анализаторами, этого разрешения хватает лишь для того, чтобы измерить массу иона с точностью ± десятки а.е.м.
Разрешение масс-анализатора тесно связано с другой важной характеристикой - точностью измерения массы иона. Например, массы молекулярных ионов азота (N2+) и углерода монооксида (СО+) составляют 28,00615 и 27,99491 а.е.м. соответственно, оба иона характеризуются массовым числом 28. Эти ионы будут регистрироваться масс-спектрометром порознь при разрешении 2500, а измеренное точное значение массы покажет, какой из этих газов регистрируется. Измерение точной массы доступно на приборах с двойной фокусировкой, на времяпролётных масс-спектрометрах (в низкомолекулярном диапазоне) и на масс-спектрометрах ионно-циклотронного резонанса.
Динамический диапазон. Динамический диапазон - соотношение максимального и минимального детектируемых сигналов. При анализе смеси, содержащей 99,99 % одного соединения или какого-либо элемента и 0,01 % какой-либо примеси, диапазон линейности должен быть четвёртого порядка. Масс-спектрометры для анализа органических соединений характеризуются динамическим диапазоном в 5–6 порядков, а масс-спектрометры для элементного анализа – в 9–12 порядков.
Чувствительность является одной из важнейших характеристик аналитических приборов. Обычно рассматривают связанный с чувствительностью параметр – минимальное определяемое количество вещества или порог обнаружения. Типичная величина порога обнаружения хроматомасс-спектрометра, используемого для анализа органических соединений, составляет 1∙10−12 г при вводе 1 мкл раствора.
Пределы обнаружения неорганических веществ методом ICP/MS (ИСП/МС – масс-спектрометрия с индуктивно связанной плазмой) составляют 1∙10−15 (одна доля на квадриллион).
Масс-спектрометр состоит из следующих блоков, имеющих несколько разновидностей: системы ввода образца, ионного источника, масс-анализатора, детектора и системы обработки данных.
Первой стадией анализа является ввод образца испытуемого вещества в прибор без существенного нарушения вакуума.
Наиболее применимы системы ввода, позволяющие анализировать компоненты смеси, разделяемые при помощи соответствующего прибора, соединённого с масс-спектрометром.
Газовая хроматография/масс-спектрометрия (ГХ/МС) (GC/MS)
При использовании подходящих капиллярных колонок возможно непосредственное введение конца колонки в ионный источник прибора без применения сепаратора.
Применяется для анализа химических соединений, имеющих температуру кипения примерно до 400 ºС.
Жидкостная хроматография/масс-спектрометрия (ЖХ/МС) (LC/MS). Такая комбинация приборов особенно эффективна при анализе нелетучих полярных соединений либо термолабильных веществ. В связи с трудностью получения ионов в газовой фазе при данном методе требуется применение специальных интерфейсов: электроспрей (ESI), термоспрей (TSI), химическая ионизация при атмосферном давлении (APCI), фотоионизация при атмосферном давлении (APPI) и др., которые представляют собой самостоятельные методы ионизации и будут рассмотрены ниже.
Сверхкритическая флюидная хроматография/масс-спектрометрия. Этот метод ввода образца заключается в том, что подвижная фаза, обычно состоящая из находящегося в сверхкритическом состоянии углерода диоксида, переходит в газообразное состояние после прохождения через нагретую заслонку, находящуюся между колонкой и ионным источником.
Капиллярный электрофорез/масс-спектрометрия (CE/MS). Элюент вводится в ионный источник, в некоторых случаях после добавления дополнительного растворителя, при этом скорость потока может достигать нескольких миллилитров в минуту. Ограничениями данного метода являются малые количества вводимого образца и необходимость использовать летучие буферные растворы.
Устройства для прямого ввода образца. Образец вводится в прибор через вакуумный шлюз при помощи клапана, штанги, транспортёра или автосамплера, испаряется термически или в процессе десорбции с поверхности непосредственно в ионном источнике. При таком способе ввода необходимо использовать чистые образцы или иметь в виду, что полученный масс-спектр может представлять собой спектр смеси нескольких соединений.
Электронная ионизация (EI). Образец испытуемого вещества, находящийся в газообразном состоянии, ионизируют потоком электронов, энергия которых (обычно 70 эВ) больше энергии ионизации образца. При этом, кроме молекулярного иона М+, образуются осколочные (фрагментные) ионы меньшей массы, характерные для данной молекулярной структуры. Главным ограничением данного способа является необходимость испарения образца, что делает невозможным исследование полярных, термолабильных или высокомолекулярных соединений. Электронная ионизация может быть использована в газовой хроматографии в сочетании с масс-спектрометрией и лишь в отдельных случаях – в жидкостной хроматографии.
При этом способе ионизации используют газ-реагент (метан, изобутан, аммиак, азота монооксид, азота диоксид или кислород). В спектре присутствуют ионы типа (М + Н)+, (М – Н)−, а также ионные комплексы, образованные аналитом с используемым газом-реагентом. Фрагментация при химической ионизации проявляется в меньшей степени, чем при ионизации электронным ударом.
Для термолабильных веществ используют разновидность данного метода ионизации, при которой образец, нанесённый на проволоку, очень быстро испаряется вследствие эффекта Джоуля – Томсона (десорбционная химическая ионизация).
Бомбардировка быстрыми атомами (FAB) или ионизация бомбардировкой быстрыми ионами (вторично-ионная масс-спектрометрия – SIMS). Образец, растворённый в вязкой матрице (глицерин или м-нитробензиловый спирт), наносят на металлическую поверхность, ионизируют потоком нейтральных атомов (аргон или ксенон) или обладающими большой кинетической энергией ионами цезия. Наблюдают ионы (М + Н)+ и (М – Н)− типов или ионные комплексы, образованные средой (матрицей) и образцом. Данный тип ионизации хорошо подходит для полярных, термолабильных соединений, позволяя получать спектры молекул с массой до 10000 Да. Важно, чтобы образец был равномерно распределён в матрице, в противном случае качество спектра сильно ухудшается, а попытки количественного анализа смесей приводят к непредсказуемым результатам. Известен проточный вариант FAB, который может быть использован для жидкостной хроматографии, однако скорость потока подвижной фазы должна быть очень низкой (менее 10 мкл/мин).
Полевая десорбция и полевая ионизация
Образец испаряют около вольфрамового проволочного эмиттера, покрытого микроиглами (полевая ионизация) или помещают на эту проволоку (полевая десорбция).
Электрическое поле (напряжение около 10 кВ), образуемое эмиттером, ионизирует образец. Энергия, переносимая при данных способах ионизации, составляет всего доли эВ, т.е. избыточная энергия молекулярного иона значительно ниже, чем при других способах ионизации. Кроме того, другие электроны ионизирующейся молекулы не возбуждаются, и М+ оказывается в основном (невозбуждённом) электронном состоянии, и спектр зачастую представляет собой единственный пик, принадлежащий молекулярному иону.
Матричная лазерная десорбционная ионизация (MALDI). Образец, смешанный с соответствующей средой (матрицей) и помещённый на металлическую подложку, ионизируют короткими лазерными импульсами с длиной волны от УФ- до ИК-диапазона (продолжительность импульсов может составлять от пикосекунды до нескольких наносекунд). В качестве матрицы обычно используют УФ-поглощающие органические соединения (2,5-дигидроксибензойная, синаповая кислоты, 2,6-дигидроксиацетофенон и др.). Данный способ ионизации применяют главным образом, при анализе соединений с очень большой молекулярной массой (более 100 000 Да).
Индуктивно связанная плазма (ICP). Образец, растворённый в сильной минеральной кислоте (азотная кислота, хлористоводородная кислота, фтористоводородная кислота, в смеси азотной кислоты концентрированной и соляной кислоты 1:3 и т.д.), подаётся в зону горения аргоновой плазмы, где при температуре в несколько тысяч градусов происходит распад образца на атомы с ионизацией. Метод применяют для определения более 70 элементов. Ввиду наличия молекулярных интерференций оптимально использовать приборы высокого разрешения или комбинированные масс-анализаторы с камерой соударений. Изотопные интерференции, как правило, могут быть разрешены математическими методами.
Электроспрей (электрораспыление) (ESI). Образец, находящийся в растворе, вводится в источник через капилляр, на конце которого имеется потенциал порядка 5 кВ. На выходе из капилляра образуется аэрозоль из заряженных капель с высоким поверхностным зарядом. Испарение молекул растворителя из образующихся микрокапель приводит к образованию в газовой фазе однозарядных (М + Н)+, (М – Н)− или многозарядных ионов (М + nН)n+, (М – nН)n−. Скорость потока подвижной фазы при данном виде ионизации может меняться от нескольких нл/мин до 1–2 мл/мин. Такой способ ионизации применяют для полярных соединений. Использование электроспрея особенно эффективно для установления структуры полипептидов, белков и нуклеиновых кислот с молекулярными массами до 1000 000 Да и выше. Очень хорошо электроспрей сочетается с жидкостной хроматографией и капиллярным электрофорезом.
Химическая ионизация при атмосферном давлении (APCI). Ионизацию образца проводят при атмосферном давлении в зоне коронного разряда, помещённой на пути подвижной фазы, которая распыляется как вследствие тепловых эффектов, так и благодаря использованию потока азота. Образуются однозарядные ионы (М + Н)+ или (М – Н)−. Метод хорошо зарекомендовал себя для анализа сравнительно небольших полярных и неполярных молекул с массой менее 1200 Да. Возможность использования высоких скоростей потока подвижной фазы (до 2 мл/мин) делает этот способ ионизации идеальным для сочетания с жидкостной хроматографией.
Фотоионизация при атмосферном давлении (APPI)
В ионном источнике APPI используют криптоновую лампу, которая излучает фотоны с энергией 10,0 и 10,6 эВ. Эти фотонные энергии достаточны для ионизации большинства анализируемых соединений, в то время как для ионизации типичных растворителей (вода, метанол, ацетонитрил и т.д.) для обращённо-фазовой жидкостной хроматографии с масс-спектрометрическим детектированием необходимо излучение с большей энергией. Использование низкоэнергетичных фотонов в качестве источника ионизации приводит к получению масс-спектров, свободных от «химического шума», а также гарантирует минимальную фрагментацию ионов, позволяя идентифицировать протонированные ионы или радикальные катионы.
Кроме перечисленных разновидностей ионных источников существует целый ряд менее распространённых способов ионизации, таких как термоспрей, плазменная десорбция, лазерная абляция и др.
Масс-спектрометрия DART. Масс-спектрометрия DART (Direct Analysis in Real Time) – быстрый метод получения спектров низкомолекулярных соединений в режиме on-line непосредственно во время анализа, практически не требующий пробоподготовки. Метод позволяет проводить сверхбыструю идентификацию компонентов любых твёрдых или жидких объектов. Процедура сводится к тому, что объект вносят пинцетом (в случае твёрдых образцов) или палочкой (в случае жидких объектов) в ионный источник DART, где происходит испарение вещества и его ионизация с последующей регистрацией ионов масс-спектрометром. При этом образуются очень простые спектры, обычно содержащие протонированные молекулярные ионы низкомолекулярных компонентов пробы. Метод масс-спектрометрии DART применим для отслеживания полноты протекания реакций органического синтеза новых лекарственных веществ, прямого анализа компонентов смесей, разделённых на пластинке ТСХ, с её поверхности, обнаружения фальсификатов при анализе фармацевтических субстанций и лекарственных препаратов.
Двойная фокусировка. Принцип действия всех масс-анализаторов основан на физических законах движения заряженных частиц, согласно которым траектория заряженных частиц в магнитном поле искривляется, а радиус кривизны зависит от массы частиц. Именно в регистрирующем устройстве ионы распределяются по массам. Для увеличения разрешения на пути ионов устанавливают дополнительно электростатический анализатор. Магнитные масс-спектрометры имеют высокое разрешение, что позволяет использовать их при исследовании органических соединений с высоким разрешением, при анализе изотопных соотношений, элементном анализе на предельной чувствительности.
Устройство анализатора указанного типа основано на принципе квадруполя, который представляет собой 4 стержня, на которые попарно в противоположной полярности подаётся определённая комбинация постоянного и радиочастотного переменного электрического напряжения. Ионы, перемещающиеся параллельно осям этих стержней, попадают в гиперболическое поле. Возможность пропускания ионов зависит от соотношения m/z и напряжения радиочастотного поля. Изменяя напряжение поля, сканируют все значения m/z в рабочем диапазоне прибора (обычно от 1 до 2000). Некоторые приборы сканируют до 4000 а.е.м.
Квадрупольные масс-спектрометры не требуют использования высоких напряжений порядка тысячи вольт, в отличие от магнитных масс-спектрометров. Это позволяет упростить конструкцию, поскольку для создания вакуума в приборе требуются меньшие размеры вакуумной камеры.
Времяпролётный анализатор (Time of Flight, TOF)
В таких анализаторах ионы распределяются по массе в бесполевом пространстве, а не за счёт закономерностей движения заряженных частиц в поле (магнитном или электростатическом). Ионы из источника разгоняются электрическим полем, приобретая достаточно большую кинетическую энергию, и попадают в бесполевое пространство. На входе в это пространство все ионы имеют одинаковую кинетическую энергию и, в соответствии с формулой E = mv2/2, будут двигаться с разными скоростями. В зависимости от массы ионы в разное время достигнут детектора. Регистрация ионов и измерение времени при попадании в детектор позволяет рассчитать их массу.
На основе времяпролётного масс-анализатора сконструированы очень быстрые (и чувствительные) масс-спектрометры.
Времяпролётный масс-анализатор, в отличие квадрупольного анализатора, позволяет регистрировать широкий диапазон масс и измерять массы очень больших молекул, а наиболее подходящим способом ионизации оказался описанный выше метод MALDI.
Времяпролётные масс-анализаторы используют, в основном, благодаря их простоте, быстродействию и относительно невысокой стоимости.
Развитие квадрупольных анализаторов привело к созданию «ионной ловушки».
В квадрупольной ионной ловушке ионы фиксируются внутри квадруполя за счёт запирающих потенциалов на входном и выходном концах ловушки. Затем при наложении изменяемой резонансной радиочастоты ионы выводятся из ловушки в соответствии с величиной m/z и регистрируются электронным умножителем. Такой механизм позволяет значительно увеличить популяцию захваченных ловушкой ионов, что ведёт к расширению динамического диапазона и к улучшению чувствительности.
Ионная ловушка позволяет удерживать ионы, которые необходимы для установления строения, не акцентируясь на остальных фрагментах молекулы, при этом процесс фрагментации можно повторять многократно, до 10–15 раз (общепринятое обозначение MSn).
Ионы, подвергнутые действию сильного магнитного поля, движутся по круговым траекториям с частотами, которые могут быть непосредственно связаны с величинами m/z для этих ионов посредством Фурье-преобразования. Анализаторы такого типа обладают очень высокой разрешающей способностью (до 1000 000 и выше), а также позволяют получать МSn спектры.
Недостатком масс-анализаторов на основе ионно-циклотронного резонанса является необходимость использования очень низкого давления (порядка 10−7 Па) и применение сверхпроводящих магнитов, работающих при температуре жидкого гелия 4,2 К.
В орбитальной ловушке ионов (Orbitrap) не используют магнитные поля (масс-спектрометр с двойной фокусировкой или ионно-циклотронного резонанса) или радиочастоты (квадрупольные ионные ловушки). Принцип работы масс-анализаторов этого типа основан на электростатической аксиально-гармонической орбитальной ловушке ионов, которая использует симметричное статическое электрическое поле между внешним и внутренним электродами специальной формы.
По аналогии с масс-анализаторами на основе ионно-циклотронного резонанса в спектрометре с орбитальной ионной ловушкой ион детектируют по наведённому значению тока на внешних электродах; частоты, соответствующие различным m/z, выделяют с помощью алгоритма Фурье-преобразования, а затем конвертируют в масс-спектр.
Орбитальная ловушка характеризуется также большей ёмкостью ионов. Большая ёмкость пространственного заряда по сравнению с ионно-циклотронной и квадрупольной ловушками позволяет достичь большей точности измерения массы (разрешение порядка 100 000 на полувысоте пика), более широкого динамического диапазона и диапазона отношений величин m/z.
Обнаружение сигнала и обработка данных
Ионы, разделённые анализатором, преобразуются в электрические сигналы детектирующими системами, в частности, электронным умножителем, фотоумножителем или цилиндром Фарадея. Контроль различных физических параметров, требуемых для согласованной работы всех систем прибора, обработка данных, включая калибровку, визуализацию спектров, автоматические количественные расчёты, архивирование данных, создание и использование библиотек масс-спектров, осуществляются компьютером с соответствующим программным обеспечением.
Различают три основных способа регистрации спектров: по полному ионному току (TIC); мониторинг избранного иона (SIM) или нескольких ионов (MIM); селективная регистрация избранных реакций распада иона (SRM) или нескольких ионов (MRM).
Регистрация по полному ионному току и по диссоциации, инициированной соударением, позволяют получать масс-спектры, однозначно связанные со строением конкретной молекулы.
На основе полученных таким образом спектров созданы библиотеки (базы данных), позволяющие определять структуру молекулы по эталонным спектрам.
Селективная регистрация ионов позволяет определять малые концентрации аналита на фоне сложной матрицы, а также приводит к огромному выигрышу в чувствительности: время, которое тратится на запись полного масс-спектра, при селективной регистрации используется для записи только одного или нескольких ионов.
Регистрация избранных реакций является ещё более избирательным методом определения искомого соединения в сложной смеси.