-
- Главная
- Фармакопея
- ФСО
- Общая информация
Утверждена приказом: | Приказ Минздрава России от 21.11.2014 № 768 |
Дата введения в действие: | c 01.01.2016 |
Издание: | Государственная фармакопея Российской Федерации XIII издания |
Раздел: | 1.2.1.4. Ионометрия |
Тип: | Общая фармакопейная статья (ОФС) |
Номер: | ОФС.1.2.1.0004.15 |
Внутр.№: | 693.1 |
Статус: | Действующая статья |
Метод ионометрии основан на измерении активности (концентрации) определяемых ионов с помощью ионоселективных (индикаторных) электродов. Ионоселективный электрод обладает избирательной чувствительностью к определенному виду ионов, от содержания которых зависит его потенциал. В основу ионометрии положен принцип потенциометрического анализа, заключающийся в измерении разности потенциалов (электродвижущей силы) индикаторного ионоселективного электрода и электрода сравнения, потенциал которого постоянен.
Зависимость электродвижущей силы электродной системы от активности потенциалопределяющего иона описывается уравнением Нернста:
где: Е - разность потенциалов между измерительным электродом и электродом сравнения (электродвижущей силы), мВ;
- стандартное значение электродвижущей силы при а=1, мВ;
R - универсальная газовая постоянная, Дж/(моль К);
Т - абсолютная температура, К;
а - активность или эффективная концентрация свободных ионов
в растворе, связанная с концентрацией соотношением:
С - молярная концентрация, моль/л;
Для очень разбавленных растворов коэффициент активности близок к единице и активность ионов равна концентрации.
Если коэффициент активности поддерживается постоянным, уравнение Нернста принимает вид:
- коэффициент, который означает изменение электродвижущей силы на единицу изменения lg а, и может быть рассчитан по формуле при любой температуре:
k = [0,05916 + 0,000198 x (t - 25°С)]
Значения k при различных температурах
Коэффициент активности (f) считается постоянным, если при измерениях во всех анализируемых и калибровочных растворах поддерживается одинаковая ионная сила. Для создания постоянной ионной силы к раствору добавляют раствор индифферентного электролита (фоновый раствор) с концентрацией в 10-100 раз больше, чем суммарная концентрация других ионов в растворе, с тем, чтобы различные количества анализируемого иона не влияли на ионную силу раствора и коэффициент активности определяемого иона оставался постоянным.
где: S - крутизна электродной функции, то
Таким образом, при постоянной ионной силе раствора и постоянной температуре наблюдается линейная зависимость электродвижущей силы электродной системы от концентрации определяемого иона.
Ионометрические измерения осуществляют с использованием ионометра (высокоомного вольтметра с входным сопротивлением по крайней мере в 100 раз большим, чем сопротивление используемых электродов), который включает в себя электродную систему и измерительный преобразователь.
В качестве ионоселективных электродов могут использоваться электроды с жидкой (пластифицированные электроды) или с твердой мембраной (монокристаллические, поликристаллические или стеклянные электроды), электроды с заряженными (положительно или отрицательно) или нейтральными подвижными носителями, сенсибилизированные электроды (электроды с ферментативной подложкой, газ-индикаторные электроды). Электродом сравнения служит, главным образом, хлорсеребряный электрод или каломельный электрод с соответствующими индифферентными соединительными жидкостями.
Показания прибора снимают в милливольтах или в единицах рХ. Подготовка ионометра к работе и проведение измерений производятся согласно инструкциям, прилагаемым к прибору. Измерения выполняют при постоянной температуре и постоянной ионной силе раствора. Помещают электроды в испытуемый раствор и снимают установившееся показание при медленном и постоянном перемешивании.
При частых измерениях периодически проверяют стабильность отклика и линейность градуировочного графика в диапазоне концентраций испытуемого раствора. В противном случае проверку проводят перед каждым измерением.
Метод градуировочного графика заключается в построении графика зависимости электродвижущей силы электродной системы от логарифма концентрации стандартных растворов и последующем нахождении концентрации испытуемого раствора по измеренному в нем значению электродвижущей силы электродной системы. Градуировочный (калибровочный) график строится микропроцессором измерительного преобразователя автоматически на основе введенных в него значений электродвижущей силы электродной системы и соответствующих им значений рХ при калибровке иономера в стандартных растворах (двух и более). Подбор концентраций стандартных растворов должен соответствовать диапазону концентраций испытуемых растворов: крайние значения концентраций испытуемых растворов должны находиться внутри линейной области калибровочного графика. Значение рХ в испытуемом растворе находится автоматически с использованием градуировочного графика по измеренному значению электродвижущей силы электродной системы (Е) - рис.1.
Поскольку в разбавленных растворах рХ=-lgC, значение молярной концентрации (моль/л) вычисляют но уравнению:
Значение массовой концентрации иона (г/л) рассчитывают, исходя из уравнения:
где: М - молярная масса иона, г/моль.
При наличии влияния других компонентов испытуемого раствора на потенциал ионоселективного электрода используют метод стандартных добавок.
Метод применим в линейных областях калибровочной кривой.
2.1. Метод многократных добавок
В испытуемый раствор объемом V, приготовленный, как указано в фармакопейной статье, вводят несколько (не менее трех) порций объемом (
) раствора с известной концентрацией определяемого иона, соблюдая условие неизменной ионной силы в растворе. Измеряют потенциал до и после каждой добавки и вычисляют разность
между потенциалом, измеренным после добавки раствора с известной концентрацией, и исходным потенциалом испытуемого раствора. Полученная величина связана с концентрацией определяемого иона уравнением:
где: V - объем испытуемого раствора, л;
С - молярная концентрация определяемого иона в испытуемом растворе, моль/л;
- добавленный объем стандартного раствора, л;
- концентрация определяемого иона в стандартном растворе, моль/л;
S - крутизна электродной функции, определяемая экспериментально при постоянной температуре измерением разности потенциалов двух стандартных растворов, концентрации которых отличаются в 10 раз и соответствуют линейной области калибровочной кривой, мВ.
Строят график зависимости от объема добавки
и экстраполируют полученную прямую до пересечения с осью абсцисс. В точке пересечения концентрация испытуемого раствора определяемого иона выражается уравнением:
К объему V испытуемого раствора, приготовленного как описано в фармакопейной статье, прибавляют объем стандартного раствора с концентрацией
. Готовят контрольный раствор в тех же условиях. Измеряют потенциалы испытуемого и контрольного раствора до и после добавления стандартного раствора. Вычисляют концентрацию С анализируемого иона, используя следующее уравнение и делая необходимые поправки на контрольный раствор:
где: V - объем испытуемого или контрольного раствора, л;
С - концентрация определяемого иона в испытуемом растворе, моль/л;
- добавленный объем стандартного раствора, л;
- концентрация определяемого иона в стандартном растворе, моль/л;
- разность потенциалов, измеренных до и после добавки, мВ;
S - крутизна электродной функции, определяемая экспериментально при постоянной температуре измерением разности потенциалов двух стандартных растворов, концентрации которых отличаются в 10 раз и соответствуют линейной области калибровочной кривой, мВ.
Водородным показателем pH, характеризующим концентрацию ионов водорода в водных растворах, называется отрицательный десятичный логарифм активности ионов водорода
Потенциометрическое определение pH заключается в измерении электродвижущей силы электродной системы, где в качестве ионоселективного электрода используют чувствительный к ионам водорода электрод (обычно стеклянный), в качестве электрода сравнения - стандартный электрод с известной величиной потенциала (насыщенный каломельный или хлорсеребряный электроды). На практике для измерения pH применяют метод градуировочного графика. pH испытуемого раствора связан с pH стандартного раствора следующим уравнением:
где: Е - потенциал электрода в испытуемом растворе, мВ;
- потенциал того же электрода в растворе с известным значением pH (стандартном растворе), мВ;
k - коэффициент, который означает изменение электродвижущей силы на единицу изменения pH, мВ;
Прибор. В качестве прибора для потенциометрического определения pH используют иономеры или рН-метры с чувствительностью не менее 0,05 единиц pH или 3 мВ. Калибровка приборов производится по стандартным буферным растворам, приведенным в общей фармакопейной статье "Буферные растворы".
Методика. Все измерения проводят при одной и той же температуре в интервале от 20 до 25°С, если нет других указаний в фармакопейной статье. В табл. 2 приведена зависимость значений pH от температуры для различных стандартных буферных растворов, используемых для калибровки прибора. Для приготовления указанных растворов могут быть использованы стандарт-титры для приготовления буферных растворов - работах эталонов pH (фиксаналы) промышленного производства.
* - изменение pH на градус Цельсия.
Если необходимо, учитывают температурные поправки в соответствии с инструкцией предприятия-производителя. Прибор калибруют при помощи буферного раствора калия гидрофталата (первичный стандарт) и одного из буферных растворов с другим значением pH (предпочтительно одного из приведенных в табл. 2). Показания прибора для третьего буферного раствора с промежуточным значением pH не должны отличаться больше, чем на 0,05 единиц pH от табличного значения pH этого раствора. Электроды прибора погружают в испытуемый раствор и измеряют pH в тех же условиях, что и для буферных растворов.
Все испытуемые растворы и стандартные буферные растворы должны быть приготовлены на воде очищенной, не содержащей углерода диоксид, для чего перед употреблением ее необходимо прокипятить. Вода, не содержащая углерода диоксид, должна иметь pH 5,8 - 7,0.
0,05 М раствор калия тетраоксалата. 12,61 г растворяют в воде и доводят объем раствора тем же растворителем до 1000,0 мл.
Насыщенный при 25°С раствор калия гидротартрата. Избыток энергично встряхивают с водой при температуре 25°С в течении 30 мин. Фильтруют или декантируют. Раствор используют свежеприготовленным.
0,05 М раствор калия дигидроцитрата. 11,41 г растворяют в воде и доводят объем раствора тем же растворителем до 1000,0 мл. Раствор используют свежеприготовленным.
0,05 М раствор калия гидрофталата. 10,13 г , предварительно высушенного при температуре от 110 до 135°С до постоянной массы, растворяют в воде и доводят объем раствора тем же растворителем до 1000,0 мл.
0,025 М раствор калия фосфата однозамещенного и 0,025 М раствор динатрия гидрофосфата безводного. 3,39 г и 3,53 г
, предварительно высушенных в течение двух часов при температуре от 110 до 130°С до постоянной массы, растворяют в воде и доводят объем раствора тем же растворителем до 1000,0 мл.
0,0087 М раствор калия фосфата однозамещенного и 0,0303 М раствор динатрия гидрофосфата безводного. 1,18 г и 4,30 г
, предварительно высушенных при температуре от 110 до 130°С, растворяют в воде и доводят объем раствора тем же растворителем до 1000,0 мл.
0,01 М раствор натрия тетрабората. 3,80 г растворяют в воде и доводят объем раствора тем же растворителем до 1000,0 мл. Хранят, защищая от углерода диоксида.
0,025 М раствор натрия карбоната и 0,025 М раствор натрия гидрокарбоната. 2.64 г и 2,09 г
растворяют в воде и доводят объем раствора тем же растворителем до 1000,0 мл.
При измерении pH в неводных и смешанных растворителях, а также в некоторых коллоидных системах, следует иметь в виду, что полученные значения pH являются условными.
Примечание. Буферные растворы хранят в хорошо закрытых склянках нейтрального стекла в течение 3-х мес. При образовании осадков и видимых изменений буферные растворы не подлежат использованию.